Composite Fault Diagnosis of Rolling Bearing Based on Chaotic Honey Badger Algorithm Optimizing VMD and ELM

نویسندگان

چکیده

In order to effectively extract the characteristic information of bearing vibration signals and improve classification accuracy, a composite fault diagnosis method rolling based on chaotic honey badger algorithm (CHBA), which optimizes variational mode decomposition (VMD) extreme learning machine (ELM), is proposed in this paper. Firstly, aiming solve problem that HBA optimization process can easily fall into local slow convergence speed, sinusoidal mapping introduced HBA, advantages CHBA are verified by 23 benchmark functions. Then, taking Gini index square envelope (GISE) as fitness function, VMD optimized with obtain optimal number modes K quadratic penalty factor. Secondly, first four IMF components largest GISE values selected, grouped “Systematic Sampling Method (SSM)” calculate signal energy form feature vector. Finally, error rate vector input ELM model classify identify different types faults. Through experimental analysis, compared BP, ELM, GWO-ELM, HBA-ELM, has better results for faults, accuracy reach 100%, provides new way diagnosis.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Diagnosis of Rolling Bearing Based on Feature Extraction and Neural Network Algorithm

The rolling element bearing is a key part in many mechanical facilities and the diagnosis of its faults is very important in the field of predictive maintenance. Till date, the resonant demodulation technique (envelope analysis) has been widely exploited in practice. In complex machines, the vibration generated by a component is easily affected by the vibration of other components or is corrupt...

متن کامل

Rolling Bearing Fault Analysis by Interpolating Windowed DFT Algorithm

This paper focuses on the problem of accurate Fault Characteristic Frequency (FCF) estimation of rolling bearing. Teager-Kaiser Energy Operator (TKEO) demodulation has been applied widely to rolling bearing fault detection. FCF can be extracted from vibration signals, which is pre-treatment by TEKO demodulation method. However, because of strong noise background of fault vibration signal, it is...

متن کامل

Fault Diagnosis Method Based on a New Supervised Locally Linear Embedding Algorithm for Rolling Bearing

In view of the complexity and nonlinearity of rolling bearings, this paper presents a new supervised locally linear embedding method (R-NSLLE) for feature extraction. In general, traditional LLE can capture the local structure of a rolling bearing. However it may lead to limited effectiveness if data is sparse or non-uniformly distributed. Moreover, like other manifold learning algorithms, the ...

متن کامل

Tensor Singular Spectrum Decomposition Algorithm Based on Permutation Entropy for Rolling Bearing Fault Diagnosis

Mechanical vibration signal mapped into a high-dimensional space tends to exhibit a special distribution and movement characteristics, which can further reveal the dynamic behavior of the original time series. As the most natural representation of high-dimensional data, tensor can preserve the intrinsic structure of the data to the maximum extent. Thus, the tensor decomposition algorithm has br...

متن کامل

Fault Diagnosis of Rolling Bearings Based on SURF algorithm

This paper proposed a new method for fault diagnosis of rolling bearings based on SURF (Speeded-Up Robust Features) algorithm, where two-dimension signal is used. Different from other classical 1-d signal processed methods, the proposed method transforms the 1-dimensional vibration signals into images, then image processed methods are utilized to analyze the image signal so as to reach the goal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machines

سال: 2022

ISSN: ['2075-1702']

DOI: https://doi.org/10.3390/machines10060469